

Particle physics: the flavour frontiers

Lecture 8: QCD at low energies – tree-level meson decays

Prof. Radoslav Marchevski
April 9th 2025

Short recap and today's learning targets

Last time we discussed

- What types of mesons we study in flavour physics experiments and how they are produced
- What are the most important experimental aspects of experimental flavour physics
- What are the main past and present facilities used to perform flavour physics experiments

Today you will ...

- learn about some characteristics of QCD at low energy
- learn about the interplay between QCD and weak interactions in meson decays (factorization, decay constants, form factors, ...)
- learn how to leptonic decays of charged mesons are described and which experimental techniques can be used to measure them

The Quark Model

- Simplest hadrons in the quark model:
 - *Mesons*: quark-antiquark constituents, $M = q\bar{q}$
 - *Baryons*: three quark constituents, $B = qqq$
 - *Antibaryons*: three antiquark constituents, $\bar{B} = \bar{q}\bar{q}\bar{q}$
- Quantum numbers of the hadrons are dictated by the quantum numbers of the constituent quarks and antiquarks
- Lightest mesons are the pions

$$\pi^+ = u\bar{d}, \quad \pi^0 = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d}), \quad \pi^- = \bar{u}d$$

- Lightest baryons are the proton and the neutron

$$p = uud, \quad n = udd$$

- Mesons carry no baryon number, baryons carry a baryon number that we normalize to $B = +1$, and antibaryons carry a baryon number $B = -1$ (note that B can also be used to denote B -mesons)

Hadron masses

- The mass of the hydrogen atom comes from the sum of the electron mass, proton mass, and a potential (binding) energy ($V = -13.6$ eV)
- To make this statement, it is crucial that we are able to pull the electron and proton apart and measure their masses independent of their mutual electric field
- For hadrons it's much more complicated:
 - we can think of the hadron mass in a similar way to the mass of the hydrogen atom, sum of the mass of all constituent quarks and the binding energy that is of order $\Lambda_{\text{QCD}} \sim \mathcal{O}(300 \text{ MeV})$
 - but confinement implies that we can't separate quarks and measure their masses in isolation
 - how are we supposed to separate the contribution to the hadron masses from constituent quarks and QCD binding energy?

Hadron masses

- How can we separate the contribution to the hadron masses from constituent quarks and QCD binding energy?
- Option: measure the quark masses at high energy
 - couplings are small and can be treated perturbatively
 - the result is scale-dependent
 - effect of running of the couplings is very small for the lepton masses but dramatic for quark masses
 - we can't calculate the running quark mass below the confinement scale, $\mathcal{O}(\Lambda_{\text{QCD}} \sim 300 \text{ MeV})$
- We can split the quarks into three groups: light ($q = u, d, s$), heavy quarks ($Q = c, b$), and very heavy quark t
 - $q = u, d, s$: for light hadrons, the binding energy is the main contributor to the hadron mass
 - $Q = c, b$: for heavy hadrons (at least one heavy quark), the quark mass is the main contributor to the hadron mass and the binding energy is a correction of order $\mathcal{O}(\Lambda_{\text{QCD}}/m_Q)$
 - t : decay width is very large ($\Gamma_t \gg \Lambda_{\text{QCD}}$) \Rightarrow to leading order the top quark is a free particle that doesn't form hadrons

Hadron lifetimes

- We can classify hadrons as either *stable particles* or *unstable resonances*
 - stability is not meant in the absolute sense (the only truly stable hadron is the proton)
- Two meanings of “stability”: *experiment-related* and *theory-related*
- **Experimentally**, we can determine the lifetime in two ways:
 - measure the decay width (by the energy of the decay products)
 - measure the distribution of the decay times
 - a particle is considered stable if its lifetime is large enough to be measured by the second method (or even larger so it escapes the detector before decaying)
- **Theoretically**, a particle is stable if it does not decay through QCD or QED but only via the weak interaction
 - hadrons whose decays violate the accidental flavour symmetry of QCD and QED
 - resonances are the particles that are not stable

Resonances

- Some resonances are so broad, with a width of the order of their mass
 - questionable if it's a bound state at all
 - in the PDG, particles whose name contains their mass in parenthesis (e.g. $\rho(770)$) are resonances, the rest are particles
- Example of a resonance: ρ^+ meson
 - decays via QCD, almost always to two pions, $\rho^+ \rightarrow \pi^+ \pi^0$
 - width is large $\Gamma_\rho \approx 150$ MeV just a factor of five less than its mass
- Example of a particle: π^+ meson
 - decays via the weak interaction, almost always via a W^+ , $\pi^+ \rightarrow \mu^+ \nu_\mu$
 - width is very small $\Gamma_\pi \approx 10^{-8}$ eV much smaller than its mass
- The **ratio $\Gamma_\rho/\Gamma_\pi \sim 10^{16}$** demonstrates the difference between a resonance and a stable particle and explains why weakly decaying hadrons are called stable

Combining QCD with weak interactions

- Extracting experimentally the weak interaction parameters for quarks is not trivial
 - our Lagrangian is written in terms of quarks and gluons, while experimentally we observe hadrons
 - analysing physical processes in QFT we use asymptotically free states but quarks and gluons can't be free at infinity
 - we can deal with it by "parametrizing our ignorance"
- We isolate the parts of the amplitudes that are non-perturbative and apply the relevant methods to calculate them (or relate them to another measurable process)
- **Factorisation:** assume that we can factorise a process to a QCD part and a non-QCD part
- *Example:* purely leptonic decay $W^+ \rightarrow l\nu$ with an amplitude (matrix element)
$$\mathcal{A}_{W \rightarrow l\nu} = g \langle l\nu | \mathcal{O} | W \rangle, \quad \mathcal{O} \sim \bar{l}_L \gamma_\mu W^\mu \nu_L$$

operator that mediates the process
in the SM at tree level
- Simple calculation, the operator creates and annihilates the particles, and the amplitude is $\mathcal{A} \propto g$

Combining QCD with weak interactions

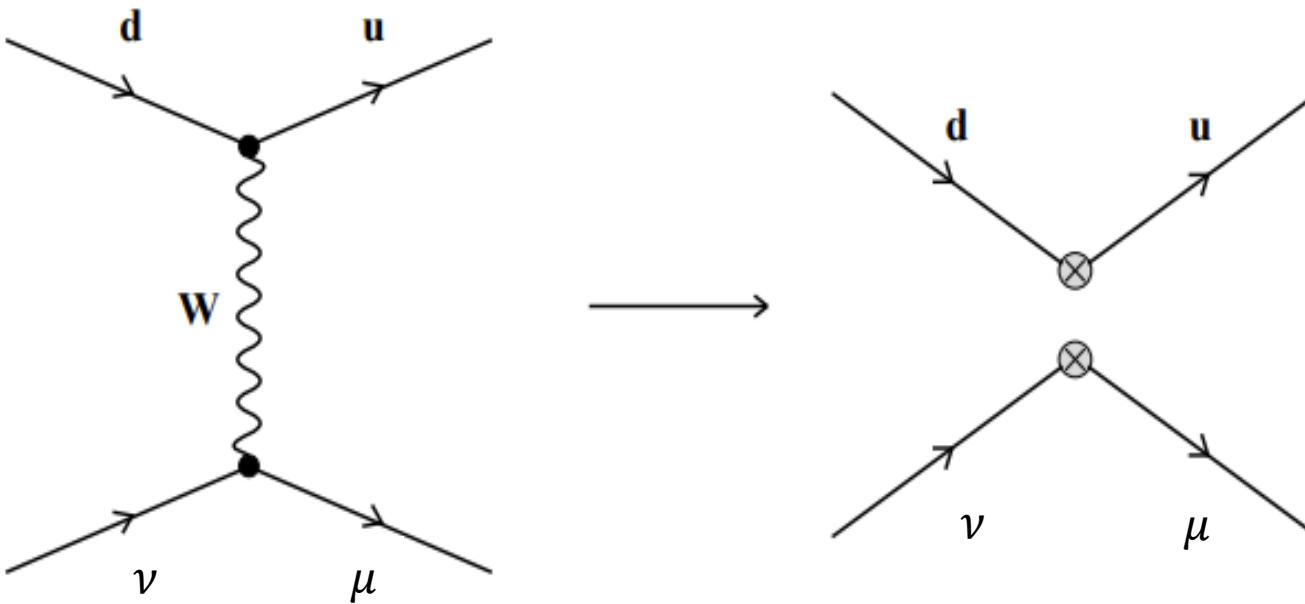
- *Example:* hadron decay $\pi^- \rightarrow l^- \bar{\nu}$ with an amplitude (matrix element)

$$\mathcal{A}_{\pi \rightarrow l\nu} = G_F V_{ud} \langle l \bar{\nu} | \mathcal{O} | \pi^- \rangle, \quad \mathcal{O} \sim \bar{l}_L \gamma^\mu \nu_L \bar{u}_L \gamma_\mu d_L$$

- the leptonic part is simple, the same as in the previous example
- *The pion is more complicated:* made of $u\bar{d}$ quarks in the quark model
- We can think of the $\bar{u}_L \gamma_\mu d_L$ part of the operator as the part that annihilates the pion
 - however, the $\bar{u}_L \gamma_\mu d_L$ operator annihilates free quarks, but they are not free inside the pion
 - factorisation hypothesis states that we can treat the leptonic and hadronic parts of the matrix element separately and write the results as a product of the two terms
 - leptons do not participate in the strong interaction so they can be factored out

$$\langle l \bar{\nu} | \mathcal{O} | \pi^- \rangle = \langle l \bar{\nu} | \mathcal{O}_l | 0 \rangle \times \langle 0 | \mathcal{O}_H | \pi^- \rangle$$

Combining QCD with weak interactions



$$\langle l\bar{\nu} | \mathcal{O} | \pi^- \rangle = \langle l\bar{\nu} | \mathcal{O}_l | 0 \rangle \times \langle 0 | \mathcal{O}_H | \pi^- \rangle$$

can be calculated
perturbatively

can not be calculated
perturbatively

Combining QCD with weak interactions: the decay constant

$$\langle 0 | \mathcal{O}_H | \pi^-(p_\pi) \rangle \sim \langle 0 | V^\mu - A^\mu | \pi^-(p_\pi) \rangle, \quad V^\mu = \bar{u} \gamma^\mu d, \quad A^\mu = \bar{u} \gamma^\mu \gamma_5 d$$

hadronic matrix element
(parametrized by form factors)

$$\mathcal{O}_H \sim \bar{u}_L \gamma_\mu d_L = \frac{1}{2} (V^\mu - A^\mu)$$

- The pion is pseudoscalar and the vacuum is parity-even $\rightarrow \langle 0 | V^\mu | \pi \rangle = 0$ and $\langle 0 | A^\mu | \pi \rangle \propto p_\pi^\mu$
- We don't know how to calculate $\langle 0 | A^\mu | \pi \rangle$ so we just define a proportionality constant f_π (Lorentz-scalar)

$$\langle 0 | A^\mu | \pi \rangle \equiv -i f_\pi p_\pi^\mu$$

- The decay constant f_π cannot be calculated but it can be extracted from measurements

$$\Gamma(\pi \rightarrow \mu\nu) = \frac{G_F^2 |V_{ud}|^2}{8\pi} m_\mu^2 m_\pi \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2 f_\pi^2$$

- From the measured decay rate we can extract: $f_\pi = 130.4 \pm 0.2$ MeV

Combining QCD with weak interactions: the decay constant

- Useful analog to gain physics intuition about the decay constant we can consider a perturbative system, the positronium e^+e^-
- We can define a positronium decay constant, which is calculable using QED
- Semi-classically the decay occurs when the electron and positron annihilate \rightarrow they must be at the same place
- QM tell us that the decay amplitude is proportional to the wave function at $r = 0$ (distance between e^+ and e^-)
- This intuition can be carried over to QCD bound states
- The physics of the decay constant has to do with the wave function at the origin

$$f_\pi \propto |\Psi(r = 0)|$$

- We can't calculate it perturbatively, but we know some general scaling properties
- Lattice QCD provides precise nonperturbative calculations of decay constants

Approximate symmetries of QCD (two flavours only)

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G_a^{\mu\nu} G_{a\mu\nu} + \sum_{q=u,d} (i\bar{q}D^\mu\gamma_\mu q - m_q\bar{q}q)$$

- In this Lagrangian, $m_u \neq m_d$ and \mathcal{L}_{QCD} has a $[U(1)]^2$ flavour symmetry
- If we had $m_u = m_d$ the flavour symmetry would be $U(2) = SU(2)_I \times U(1)_B$ [isospin + baryon number symmetry]
- Under isospin the u and d quark form a doublet: $Q = \begin{pmatrix} u \\ d \end{pmatrix}$
- **Important:** isospin- $SU(2)_I$ is different than $SU(2)_L$ - u and d in the doublet have both LH and RH components
- All other quarks are singlets under $SU(2)_I$
- The up and down quarks are much lighter than Λ_{QCD} , $\mathcal{O}(300 \text{ MeV})$, and isospin is an approximate symmetry of QCD, broken by a small parameter

$$\epsilon_I \equiv \frac{m_d - m_u}{\Lambda_{\text{QCD}}} \sim 10^{-3}$$

Approximate symmetries of QCD (two flavours only)

$$\epsilon_I \equiv \frac{m_d - m_u}{\Lambda_{\text{QCD}}} \sim 10^{-3}$$

Why do we compare the quark masses with the QCD scale, Λ_{QCD} ?

Approximate symmetries of QCD (two flavours only)

$$\epsilon_I \equiv \frac{m_d - m_u}{\Lambda_{\text{QCD}}} \sim 10^{-3}$$

- Due to confinement, the energy of the system we're considering is at least of order of the QCD scale
- The symmetry-breaking parameter may be smaller, but it is not larger than ϵ_I
- In addition to ϵ_I the isospin symmetry is broken by QED due to the different charges of the u and d quarks
- The size of the breaking is of order $\alpha \sim 0.01$, similar to ϵ_I
- Approximate $SU(2)_I \rightarrow$ hadron mass eigenstates can be assigned into well-defined representation of isospin
 - hadrons within an isospin multiplet are approximately degenerate – consequence of the symmetry of \mathcal{L}_{QCD}
- The degeneracy is indeed manifest in the baryon spectrum

$$m_{p(uud)} = 938.272 \text{ MeV}, \quad m_{n(udd)} = 939.565 \text{ MeV} \quad I = 1/2 \text{ doublet}$$

$$\Delta^-(ddd), \quad \Delta^0(duu), \quad \Delta^+(duu), \quad \Delta^{++}(uuu), \quad m_{\Delta} \sim 1230 \text{ MeV} \quad I = 3/2 \text{ quadruplet}$$

Approximate symmetries of QCD (two flavours only)

$$\epsilon_I \equiv \frac{m_d - m_u}{\Lambda_{\text{QCD}}} \sim 10^{-3}$$

- Due to confinement, the energy of the system we're considering is at least of order of the QCD scale
- The symmetry-breaking parameter may be smaller, but it is not larger than ϵ_I
- In addition to ϵ_I the isospin symmetry is broken by QED due to the different charges of the u and d quarks
- The size of the breaking is of order $\alpha \sim 0.01$, similar to ϵ_I
- Approximate $SU(2)_I \rightarrow$ hadron mass eigenstates can be assigned into well-defined representation of isospin
 - hadrons within an isospin multiplet are approximately degenerate – consequence of the symmetry of \mathcal{L}_{QCD}
- In the meson spectrum one can also see a quasi-degeneracy

$$m_{\pi^+(u\bar{d})} = 139.57 \text{ MeV}, \quad m_{\pi^0(u\bar{u}-d\bar{d})} = 134.98 \text{ MeV}, \quad m_{\pi^-(\bar{u}d)} = 139.57 \text{ MeV} \quad I = 1 \text{ triplet}$$

$$m_{\eta^0(u\bar{u}+d\bar{d})} = 547.86 \text{ MeV} \quad I = 0 \text{ singlet}$$

Much higher mass! Why?

Approximate symmetries of QCD (three flavours)

$$\eta^0 = \frac{u\bar{u} + d\bar{d}}{2}$$

- This assignment is only valid in the limit, where only the u and d quarks are light compared to Λ_{QCD}
- In the real world the s quark is also light, and the η^0 meson also includes an $s\bar{s}$ component

$$\eta^0 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s}) \quad m_{\eta^0} = 547.86 \text{ MeV}$$

- In addition to spectroscopy, isospin plays an important role in weak decays
 - relates form factors and even allows one to predict their values in specific kinematic points
- We can also treat the s quark light compared with Λ_{QCD}
- In this case the QCD Lagrangian gains an approximate $SU(3)_F$ flavour symmetry with u, d, s forming a triplet
- The breaking of this symmetry is much larger than isospin $\epsilon_I \sim (m_s - m_d)/\Lambda_{\text{QCD}} \sim 0.3$
 - large breaking but the symmetry considerations are still very useful (we won't discuss this further)

Approximate symmetries of QCD: heavy quark symmetry

- *Heavy quark symmetry applies to hadrons that contain one heavy quark*
- When the heavy quark mass goes to infinity the theory gains extra symmetries (not manifest in \mathcal{L}_{QCD}) but rigorously defined and provides quite useful predictions

Use QM of the Hydrogen atom as an example:

- no big difference between the chemical properties of the hydrogen isotopes (hydrogen, deuterium, tritium)
- electrons are largely insensitive to the mass and the spin of the nucleus
- the light DoF are insensitive to the heavy DoF that source the potential: **the light DoF determine the chemistry**
- the potential is insensitive to the mass and spin of the nuclear source of the electromagnetic field (to zeroth order)
- Two leading corrections

difference in the reduced mass of the system

$$\mu \equiv \frac{m_e m_A}{m_e + m_A} \approx m_e \left(1 - \frac{m_e}{m_A} \right)$$

hyperfine splitting

$$\Delta E^{\text{hf}} \sim m_e \alpha^4 \frac{m_e}{m_A}$$

Approximate symmetries of QCD: heavy quark symmetry

- Consider a meson that in the quark model is made of a b quark and a light u or d quark
- Analogously to the hydrogen atom we can think of the **light DoF (u or d)** like the **electron**, but **binding comes from QCD** instead of QED
 - we need to overcome the confining nature of QCD
 - for b quarks $m_b \gg \Lambda_{\text{QCD}}$ and we can get good results in the symmetry ($m_b \rightarrow \infty$) limit
- Let's consider specifically the $B(J = 0)$ and $B^*(J = 1)$ mesons, which in the quark model are the singlet and triplet states of the hyperfine structure
- In the $m_b/\Lambda_{\text{QCD}} \rightarrow \infty$ limit the B and B^* are degenerate (analog of the hyperfine splitting in the hydrogen system)

$$m_{B^*} - m_B \stackrel{\text{mass splitting}}{\propto} \frac{\text{const}}{m_{B^*} + m_B}$$

Approximate symmetries of QCD: heavy quark symmetry

$$m_{B^*} - m_B \propto \frac{\text{const}}{m_{B^*} + m_B}$$

- Prediction: for any heavy quark Q

$$(m_{Q^*} - m_Q)(m_{Q^*} + m_Q) = m_{Q^*}^2 - m_Q^2 = \text{const}$$

- The prediction is experimentally confirmed (small differences due to higher order effects)

$$m_{B^*}^2 - m_B^2 \approx 0.47 \text{ GeV}^2, \quad m_{D^*}^2 - m_D^2 \approx 0.55 \text{ GeV}^2$$

- Similar in other mesons (D, D_s, B_s) and their excited states
- Feature of HQS: the wave function representing the internal B and D structure is independent on the color source
- Example: $B \rightarrow D l \nu$ decay in the kinematic point where the two mesons are relatively at rest
 - the wave function of the light DoF is not affected by the $B \rightarrow D$ decay (up to a normalization) and we have

$$\langle B(p) | \mathcal{O} | D(p) \rangle = 1$$

Meson decays

- M^\pm can **only decay** to a final state f (f is a final state of particles a, b, \dots with momenta $\vec{p}_a, \vec{p}_b, \dots$)
- M^0, \bar{M}^0 can **decay** and/or **oscillate** into one another
- Decay amplitudes* $\underbrace{\mathcal{A}_f = \langle f | \mathcal{O} | M \rangle, \quad \bar{\mathcal{A}}_{\bar{f}} = \langle \bar{f} | \mathcal{O} | \bar{M} \rangle}_{\text{charged and neutral}}$ $\underbrace{\bar{\mathcal{A}}_f = \langle f | \mathcal{O} | \bar{M} \rangle, \quad \mathcal{A}_{\bar{f}} = \langle \bar{f} | \mathcal{O} | M \rangle}_{\text{only neutral}}$

M^0 and \bar{M}^0 can decay to a common final state

M^0 (or \bar{M}^0) can decay to CP - conjugate final state

- Theoretical calculation of decay amplitudes [low energy effective theories (EFT)]

- **Short-distance (SD)** dynamics (e.g. W exchange)
- QCD corrections (different techniques depending on the mass scale)
- Hadronic matrix elements (non-perturbative dynamics at low energies)

Long-distance (LD) dynamics

* \bar{M} is the CP -conjugate of M ($M^0 \xrightarrow{CP} \bar{M}^0, M^+ \xrightarrow{CP} M^-$); \bar{f} is the CP -conjugate of f ; i.e the state of \bar{a}, \bar{b}, \dots with $-\vec{p}_a, -\vec{p}_b, \dots$

Meson decays

- **Observables:** $|\mathcal{A}_f|^2, |\bar{\mathcal{A}}_{\bar{f}}|^2, |\mathcal{A}_{\bar{f}}|^2, |\bar{\mathcal{A}}_f|^2$ or any functions of them
- **Decay rate:** (valid also for any CP -conjugate process)
 - $\Gamma(M \rightarrow f) \propto |\mathcal{A}_f|^2$
 - SD part of $|\mathcal{A}_f|^2$ is proportional to $|V_{ij}|^2$
 - $\Gamma(M \rightarrow f)$ allows extraction of $|V_{ij}|^2$
 - Link is complicated due to non-perturbative effects

Extraction of $|V_{ij}|$ from $\Gamma(M \rightarrow f)$ requires control of theoretical uncertainties

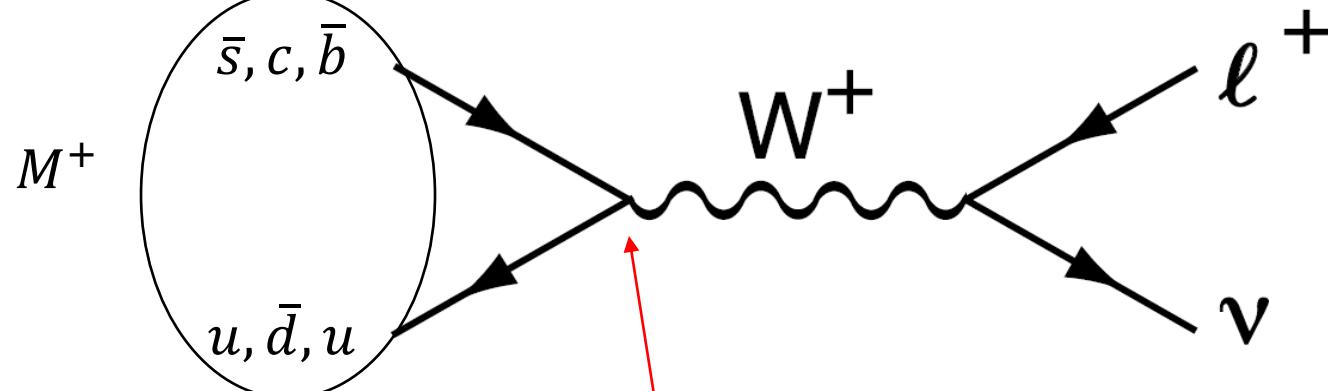
Theoretical uncertainties depend on the experimental technique to measure $\Gamma(M \rightarrow f)$

Charged mesons: leptonic decays

- Annihilation process
(tree level)

$$K^+ \rightarrow l^+ \nu \quad (l = e, \mu)$$

$$D^+, B^+ \rightarrow l^+ \nu \quad (l = e, \mu, \tau)$$



$$\Gamma^{(0)}(M \rightarrow l\nu) = \frac{G_F^2}{8\pi} f_M^2 m_l^2 m_M \left(1 - \frac{m_l^2}{m_M^2}\right)^2 |V_{q_1 q_2}|^2$$

Phase space and helicity factor

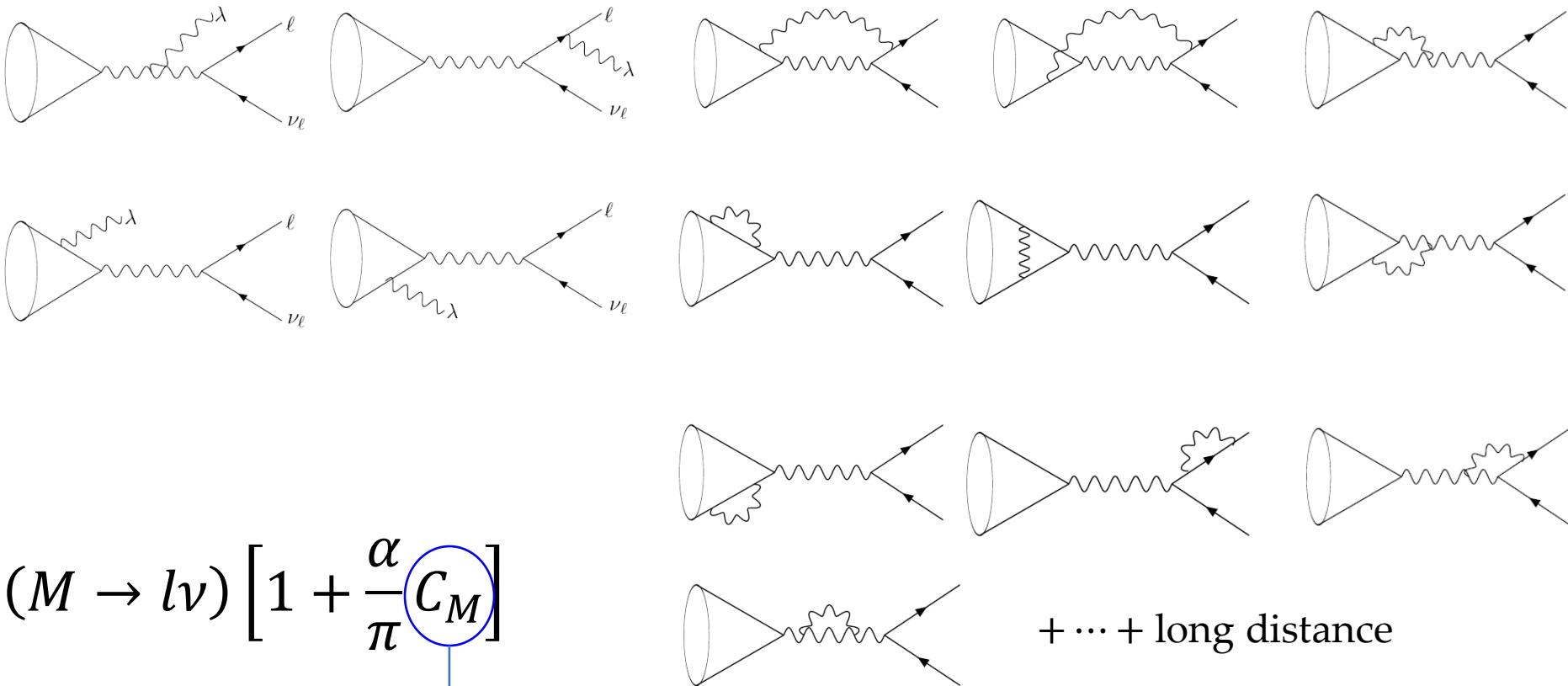
→ **Decay constant:** encodes the non-perturbative part of the hadronic matrix element (“quark wave function overlap”)

Charged mesons: leptonic decays

- Annihilation process
(radiative corrections)

$$K^+ \rightarrow l^+ \nu \ (l = e, \mu)$$

$$D^+, B^+ \rightarrow l^+ \nu \ (l = e, \mu, \tau)$$



$$\Gamma(M \rightarrow l\nu[\gamma]) = \Gamma^{(0)}(M \rightarrow l\nu) \left[1 + \frac{\alpha}{\pi} C_M \right]$$

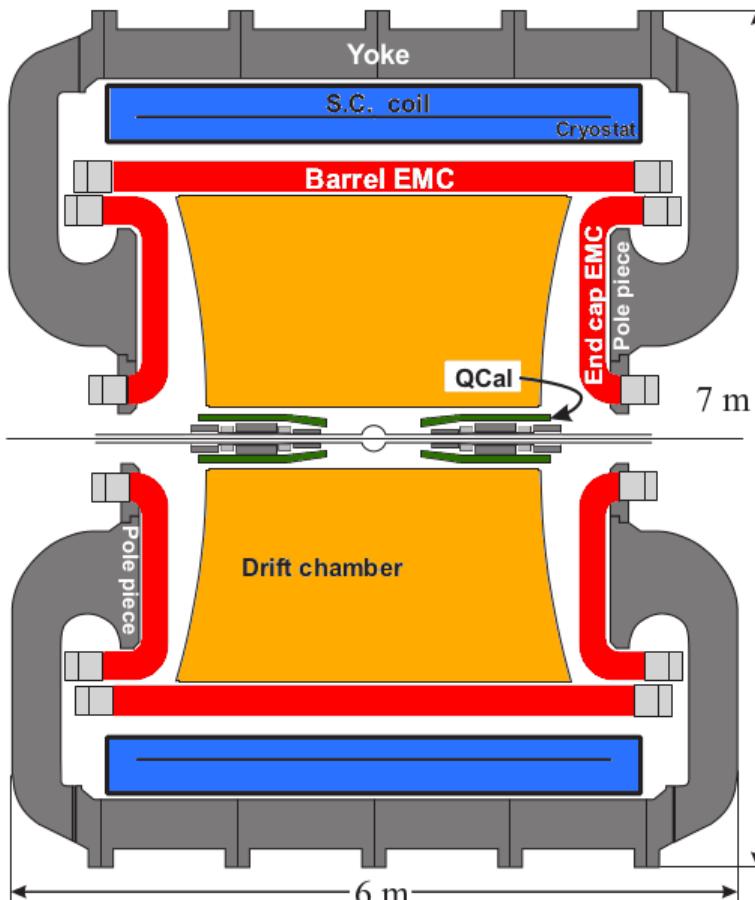
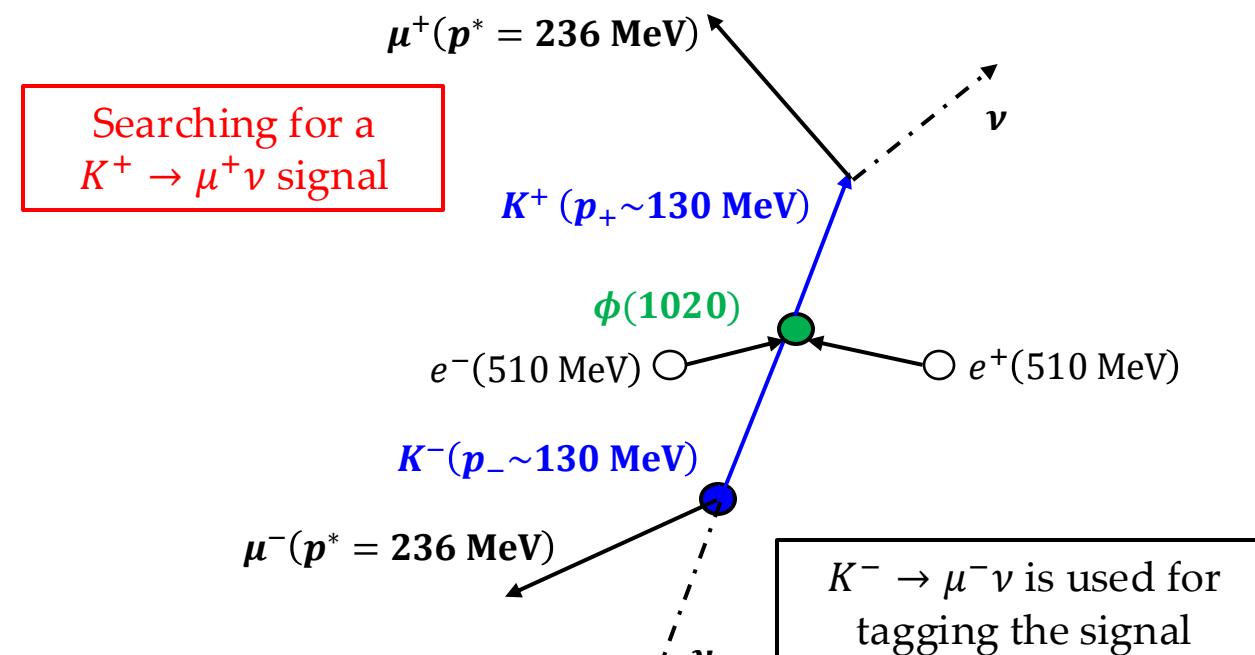
→ encodes the radiative connections (SD and LD)

- The theoretical value to compare with measurement depends on the experimental treatment of the radiative **photons** in the final state: energy threshold, detection efficiency, etc. etc.

Charged mesons: $K^+ \rightarrow \mu^+ \nu_\mu (\gamma)$ measurement

[Phys.Lett.B632:76-80(2006)]

- Latest measurement performed with the KLOE experiment at the ϕ -factory DAΦNE in Frascati
- Integrated luminosity of $\sim 175 \text{ pb}^{-1}$ collected in 2001-02 ($\sim 5.2 \times 10^8$) ϕ -meson decays
- e^+ (510 MeV) + e^- (510 MeV) collide at a 25 mrad angle $\rightarrow \phi(1020)$ has a small transverse momentum ($\sim 12.5 \text{ MeV}$)

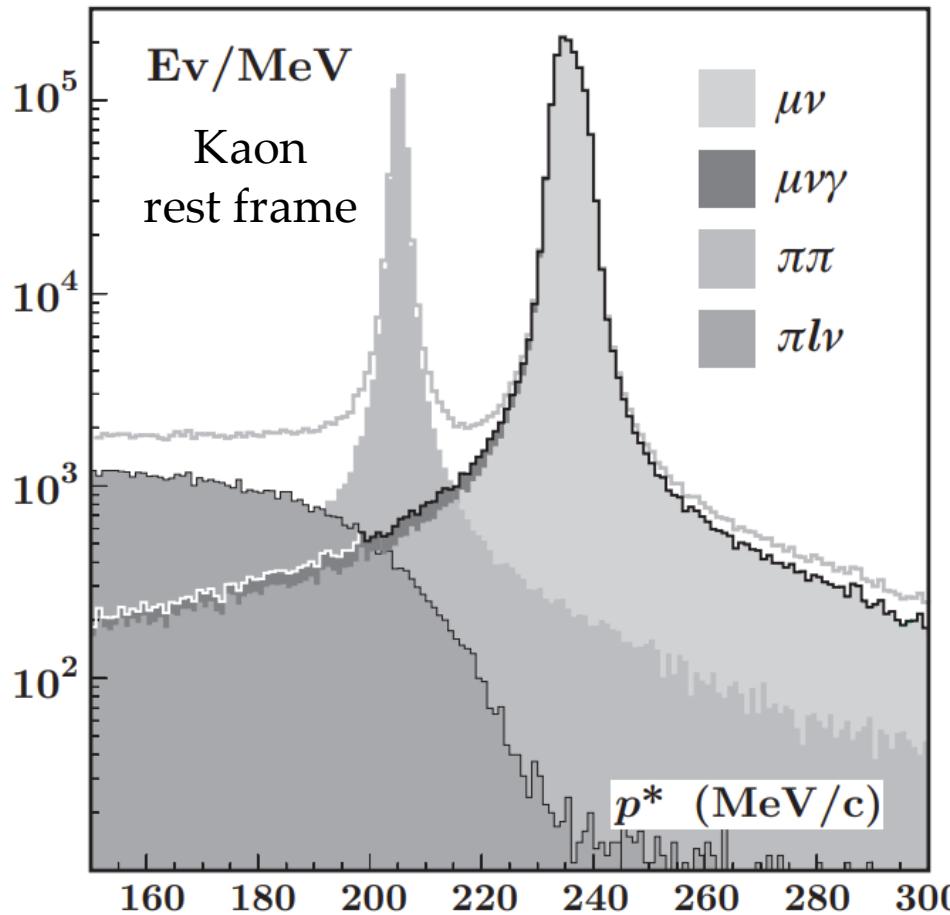
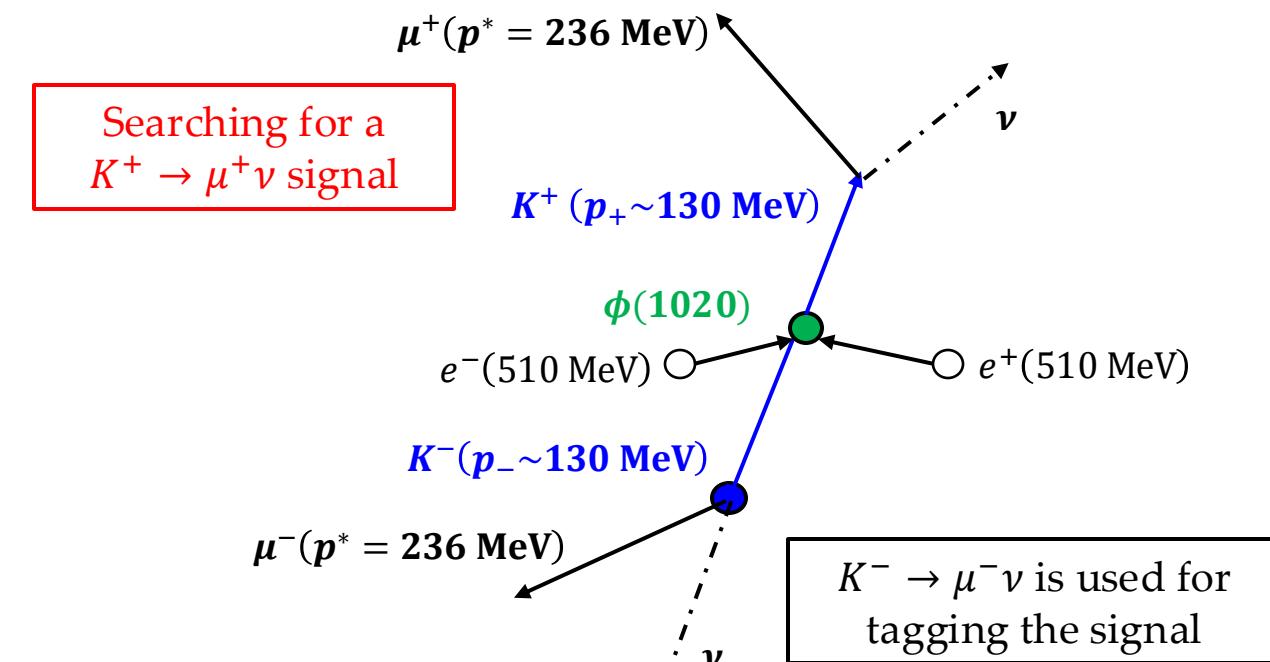


Charged mesons: $K^+ \rightarrow \mu^+ \nu_\mu(\gamma)$ measurement

[Phys.Lett.B632:76-80(2006)]

$$BR(K^+ \rightarrow \mu^+ \nu(\gamma)) = \frac{N_{K^+ \rightarrow \mu^+ \nu(\gamma)}}{N_{Tag}} \times \frac{1}{\epsilon_{tot}}$$

signal efficiency



$$BR(K^+ \rightarrow \mu^+ \nu(\gamma)) = (63.66 \pm 0.09_{\text{stat}} \pm 0.15_{\text{syst}})\%$$

Charged mesons: $K^+ \rightarrow \mu^+ \nu_\mu(\gamma)$ measurement - $|V_{us}|$ extraction

[Phys.Lett.B632:76-80(2006)]

- One can determine $|V_{us}|$ using the ratio of the inclusive decays $K^+ \rightarrow \mu \nu_\mu(\gamma)/\pi^+ \rightarrow \mu \nu_\mu(\gamma)$
- Using input from lattice QCD for the LD effects f_K/f_π ratio and other experimental and theoretical inputs we can extract $|V_{us}|/|V_{ud}|$ using the formula

$$\frac{BR(K \rightarrow \mu \nu(\gamma))}{BR(\pi \rightarrow \mu \nu(\gamma))} = \frac{f_K^2}{f_\pi^2} \frac{m_K \left(1 - \frac{m_\mu^2}{m_K^2}\right)^2}{m_\pi \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2} \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{\left[1 + \frac{\alpha}{\pi} C_K\right]}{\left[1 + \frac{\alpha}{\pi} C_\pi\right]}$$

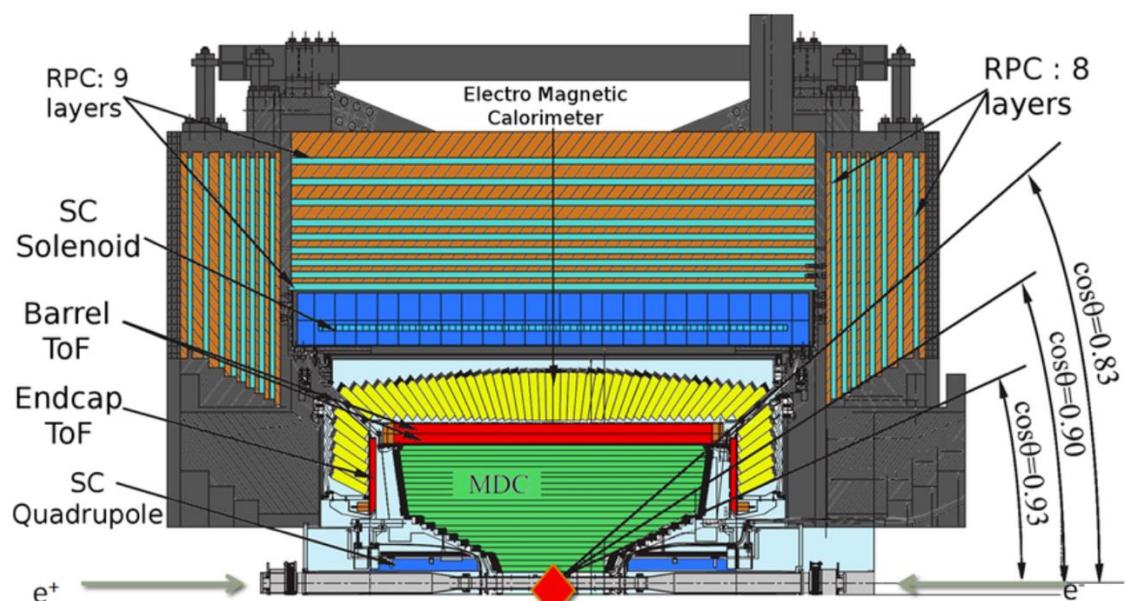
$$\frac{|V_{us}|^2}{|V_{ud}|^2} = 0.05211 \pm 0.00016_{\text{exp}} \pm 0.00019_{\text{radiative}} \pm 0.00117_{\text{lattice}}$$

$$|V_{us}|_{K^+ \rightarrow \mu^+ \nu(\gamma)} = 0.2223 \pm 0.0026 \quad (\text{result from the paper})$$

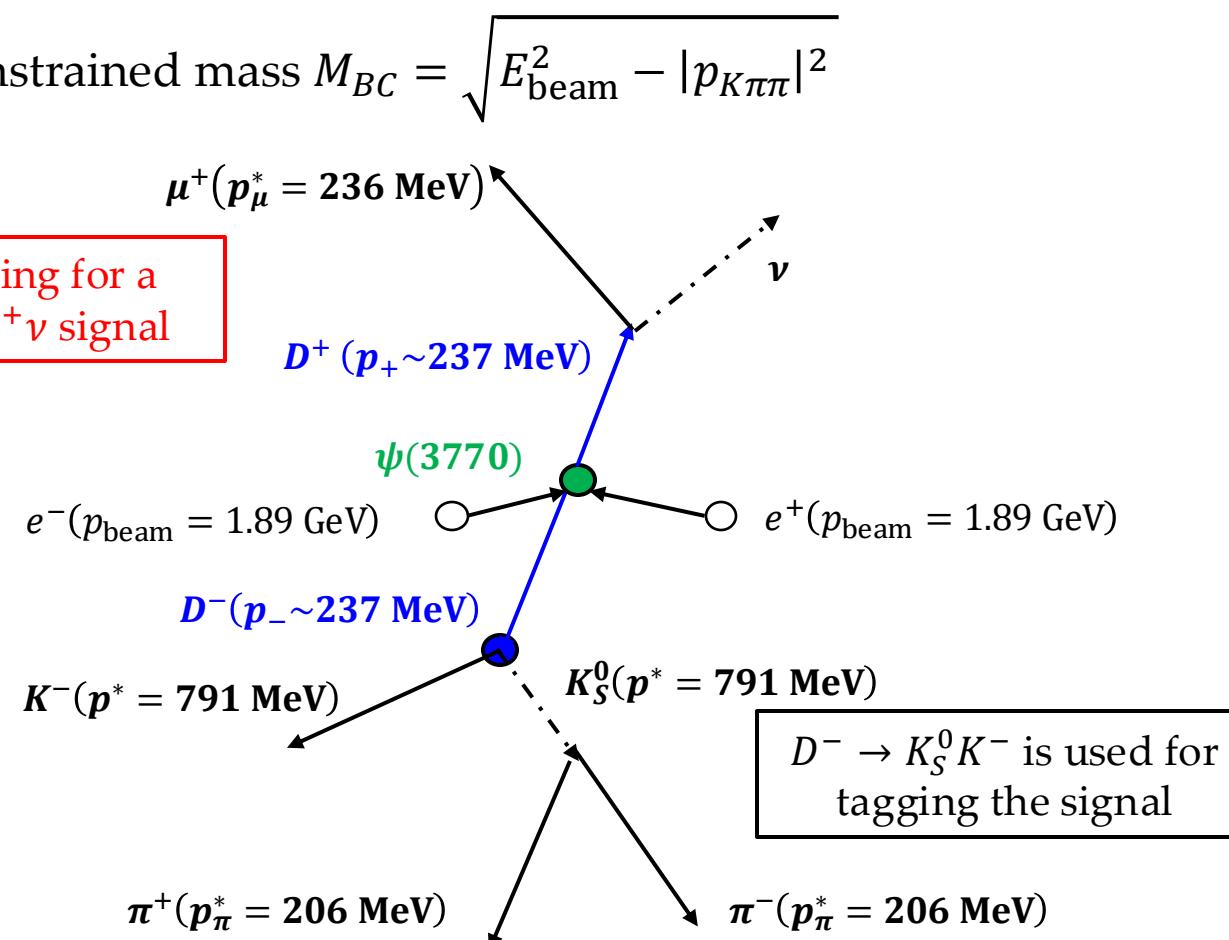
Charged mesons: $D^+ \rightarrow \mu^+ \nu_\mu$ measurement

[Phys.Rev.D 89 (2014) 5, 051104]

- Latest measurement: BES III, integrated luminosity of 2.92 fb^{-1} , collected at $\sqrt{s} = 3.773 \text{ GeV}$ ($\psi(3770)$ resonance)
- $\psi(3770) \rightarrow D^+ D^- \sim 41\%$ of the time
- Tagged D^- mesons are identified by their beam-energy-constrained mass $M_{BC} = \sqrt{E_{\text{beam}}^2 - |\mathbf{p}_{K\pi\pi}|^2}$



Searching for a
 $D^+ \rightarrow \mu^+ \nu$ signal



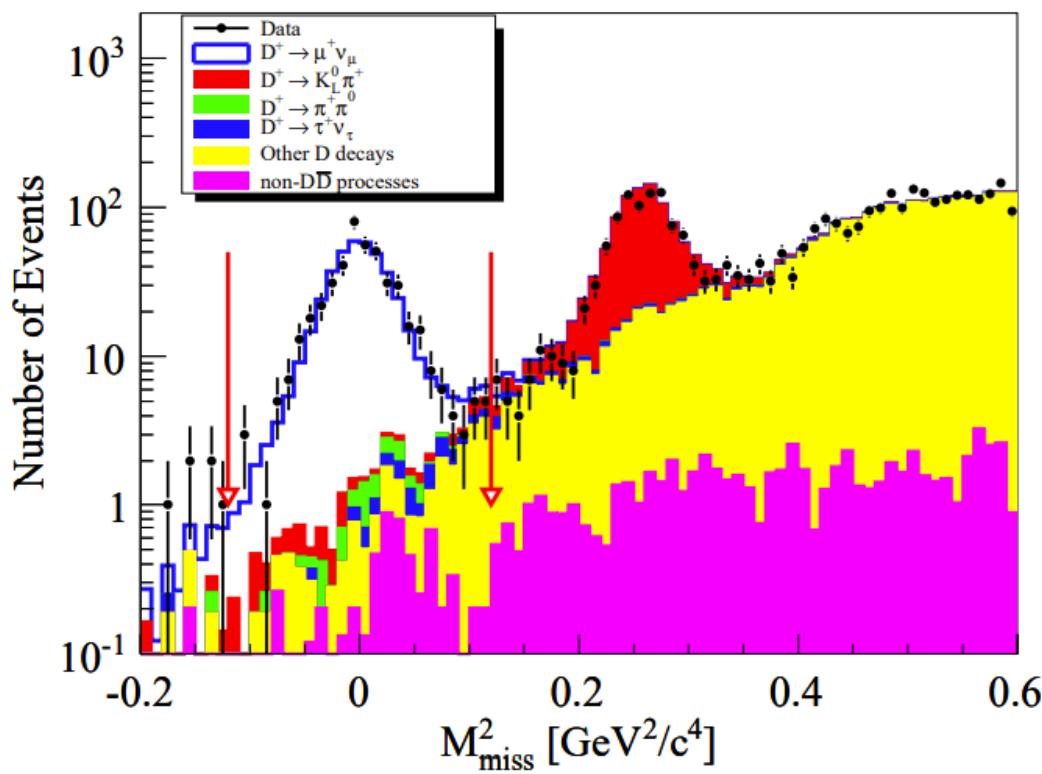
Charged mesons: $D^+ \rightarrow \mu^+ \nu_\mu$ measurement

[Phys.Rev.D 89 (2014) 5, 051104]

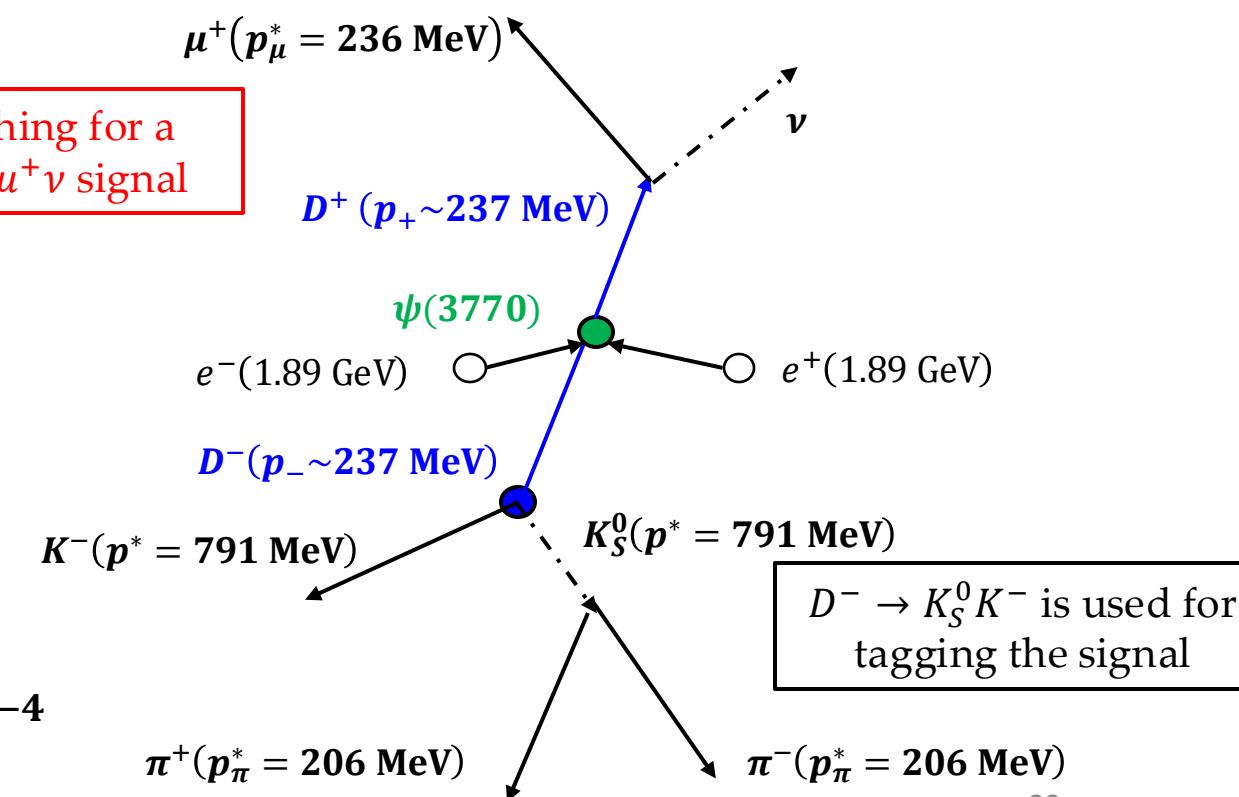
- Main kinematic variable used to define the region where we will look for signal: M_{miss}^2

- $M_{\text{miss}}^2 = (E_{\text{beam}} - E_{\mu^+})^2 - (-\mathbf{p}_{D_{\text{tag}}^-} - \mathbf{p}_\mu^+)^2$

$\mathbf{p}_{D_{\text{tag}}^-}$: 3-momentum of the tagged D^- candidate



$$BR(D^+ \rightarrow \mu^+ \nu) = (3.71 \pm 0.19_{\text{stat}} \pm 0.06_{\text{syst}}) \times 10^{-4}$$



Charged mesons: $D^+ \rightarrow \mu^+ \nu_\mu$ measurement - $|V_{cd}|$ extraction

[Phys.Lett.B632:76-80(2006)]

- One can determine $|V_{cd}|$ using the master formula for the branching ratio

$$\Gamma(D^+ \rightarrow \mu^+ \nu) = \frac{G_F^2}{8\pi} f_{D^+}^2 m_\mu^2 m_{D^+} \left(1 - \frac{m_\mu^2}{m_{D^+}^2}\right)^2 |V_{cd}|^2$$

- Using the measured branching fraction, G_F , the muon and D^+ mass, and the lifetime of the D^+ meson we get:

$$f_{D^+} |V_{cd}| = (45.75 \pm 1.20_{\text{stat}} \pm 0.39_{\text{syst}}) \text{ MeV}$$

- f_{D^+} is obtained using as input the CKM matrix element $|V_{cd}| = 0.22520(65)$ from the global SM fit

$$f_{D^+} = (203.2 \pm 5.3_{\text{stat}} \pm 1.8_{\text{syst}}) \text{ MeV}$$

- $|V_{cd}|$ is determined using $f_{D^+} = (207 \pm 4)$ MeV from lattice QCD as input

$$|V_{cd}| = 0.2210 \pm 0.0058_{\text{stat}} \pm 0.0047_{\text{syst}}$$

Summary of Lecture 8

Main learning outcomes

- What are some of the main characteristics of QCD at low energy
- What is the interplay between QCD and weak interactions in meson decays (factorization, decay constants, form factors, ...)
- How to describe theoretically leptonic decays of charged mesons and which experimental techniques can be used to measure them